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Homework - Bessel functions and spherical harmonics

1 Point particle in a conducting cylinder
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A point particle of charge Q is placed on the axis of an infinite hollow grounded conducting cylinder
of radius R.

• Find the electrostatic potential on the axis as an infinite sum involving Bessel functions.

• Show that for z � R the potential falls off exponentially ∼ C exp(−αz) with the distance along the
axis. Find the constant α.

You may need to use the following expansion of the δ-function in two dimensions in terms of Bessel
functions:
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where xn is the nth zero of the Bessel function J0(xn) = 0, and we use polar coordinates

~r = (ρ cos θ, ρ sin θ).

[The formula for δ(2)(~r) follows from equations (3.96)-(3.97) of Jackson’s textbook.]

2 Dielectric sphere in uniform electric field

An insulating dielectric sphere of radius R is placed in a uniform electric field so that far away from the
sphere ~E = Eẑ. The dielectric constant of the sphere is ε. Find the solution for the scalar potential Φ.
(recall that it is defined so that ~E = −~∇Φ.) Hint: Use separate multipole expansions for r < R and
r > R.

1



3 Two halves

A hollow conducting sphere of radius R is cut into two equal hemispheres along the equatorial. The two
halves are then glued together with a perfectly insulating glue and a battery is connected to the two halves
that keeps the lower half at potential Φ = 0 and the upper hemisphere at potential Φ = V.

Find the potential inside the hollow sphere as an infinite multipole series. Hint: You can get the
individual coefficients of the multipole expansion from the orthogonality formulas. You may have to use
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[See formula (3.23) in Jackson.]
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